skip to main content


Search for: All records

Creators/Authors contains: "van der Zande, Arend"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 31, 2025
  2. Subangstrom resolution has long been limited to aberration-corrected electron microscopy, where it is a powerful tool for understanding the atomic structure and properties of matter. Here, we demonstrate electron ptychography in an uncorrected scanning transmission electron microscope (STEM) with deep subangstrom spatial resolution down to 0.44 angstroms, exceeding the conventional resolution of aberration-corrected tools and rivaling their highest ptychographic resolutions​. Our approach, which we demonstrate on twisted two-dimensional materials in a widely available commercial microscope, far surpasses prior ptychographic resolutions (1 to 5 angstroms) of uncorrected STEMs. We further show how geometric aberrations can create optimized, structured beams for dose-efficient electron ptychography. Our results demonstrate that expensive aberration correctors are no longer required for deep subangstrom resolution.

     
    more » « less
    Free, publicly-accessible full text available February 23, 2025
  3. Strain engineering in two-dimensional (2D) materials is a powerful but difficult to control approach to tailor material properties. Across applications, there is a need for device-compatible techniques to design strain within 2D materials. This work explores how process-induced strain engineering, commonly used by the semiconductor industry to enhance transistor performance, can be used to pattern complex strain profiles in monolayer MoS2 and 2D heterostructures. A traction–separation model is identified to predict strain profiles and extract the interfacial traction coefficient of 1.3 ± 0.7 MPa/μm and the damage initiation threshold of 16 ± 5 nm. This work demonstrates the utility to (1) spatially pattern the optical band gap with a tuning rate of 91 ± 1 meV/% strain and (2) induce interlayer heterostrain in MoS2–WSe2 heterobilayers. These results provide a CMOS-compatible approach to design complex strain patterns in 2D materials with important applications in 2D heterogeneous integration into CMOS technologies, moiré engineering, and confining quantum systems. 
    more » « less
    Free, publicly-accessible full text available January 24, 2025
  4. As the field of exfoliated van der Waals electronics grows to include complex heterostructures, the variety of available in-plane symmetries and geometries becomes increasingly valuable. In this work, we present an efficient chemical vapor transport synthesis of NbSe2I2 with the triclinic space group P1̅. This material contains Nb–Nb dimers and an in-plane crystallographic angle γ = 61.3°. We show that NbSe2I2 can be exfoliated down to few-layer and monolayer structures and use Raman spectroscopy to test the preservation of the crystal structure of exfoliated thin films. The crystal structure was verified by single-crystal and powder X-ray diffraction methods. Density functional theory calculations show triclinic NbSe2I2 to be a semiconductor with a band gap of around 1 eV, with similar band structure features for bulk and monolayer crystals. The physical properties of NbSe2I2 have been characterized by transport, thermal, optical, and magnetic measurements, demonstrating triclinic NbSe2I2 to be a diamagnetic semiconductor that does not exhibit any phase transformation below room temperature. 
    more » « less
    Free, publicly-accessible full text available January 4, 2025
  5. Non-equilibrium photocarriers in multilayer WSe2injected by femtosecond laser pulses exhibit extraordinary nonlinear dynamics in the presence of intense THz fields. The THz absorption in optically excited WSe2rises rapidly in the low THz field regime and gradually ramps up at high intensities. The strong THz pulses drive the photocarriers into sidebands of higher mobility and release trapped charge carriers, which consequently enhance the transient conductivity of WSe2. The spectrally analyzed conductivity reveals distinctive features, indicating that the photocarriers undergo resonant interactions such as carrier-photon scattering.

     
    more » « less
  6. Micro- and nanoelectromechanical systems have numerous applications in sensing and signal transduction. Many properties benefit from reducing the system size to the nanoscale, such as increased responsivity, enhanced tunability, lower power consumption, and higher spatial density. Two-dimensional (2D) materials represent the ultimate limit of thickness, offering unprecedented new capabilities due to their natural nanoscale dimensions, high stability, high mechanical strength, and easy electronic integration. Here, we review the primary design principles, properties, applications, opportunities, and challenges of 2D materials as the building blocks of NEMS (2D NEMS) with a focus on nanomechanical resonators. First, we review the techniques used to design, fabricate, and transduce the motion of 2D NEMS. Then, we describe the dynamic behavior of 2D NEMS including vibrational eigenmodes, frequency, nonlinear behavior, and dissipation. We highlight the crucial features of 2D NEMS that enhance or expand the functionalities found in conventional NEMS, such as high tunability and rich nonlinear dynamics. Next, we overview the demonstrated applications of 2D NEMS as sensors and actuators, comparing their performance metrics to those of commercial MEMS. Finally, we provide a perspective on the future directions of 2D NEMS, such as hybrid quantum systems, integration of active 2D layers into nanomechanical devices, and low-friction interfaces in micromachines.

     
    more » « less
    Free, publicly-accessible full text available July 19, 2024
  7. Free, publicly-accessible full text available July 22, 2024
  8. Unique temperature dependences of the out-of-plane anomalous Hall effect and longitudinal magnetoresistance were observed, which can be attributed to the changing dominance between ferromagnetic and antiferromagnetic phases in the Fe3GeTe2sample.

     
    more » « less
    Free, publicly-accessible full text available August 11, 2024
  9. Nonlinear micro-electro-mechanical systems (MEMS) resonators open new opportunities in sensing and signal manipulation compared to their linear counterparts by enabling frequency tuning and increased bandwidth. Here, we design, fabricate and study drumhead resonators exhibiting strongly nonlinear dynamics and develop a reduced order model (ROM) to capture their response accurately. The resonators undergo electrostatically-mediated thermoelastic buckling, which tunes their natural frequency from 4.7 to 11.3 MHz, a factor of 2.4× tunability. Moreover, the imposed buckling switches the nonlinearity of the resonators between purely stiffening, purely softening, and even softening-to-stiffening. Accessing these exotic dynamics requires precise control of the temperature and the DC electrostatic forces near the resonator’s critical-buckling point. To explain the observed tunability, we develop a one-dimensional physics-based ROM that predicts the linear and nonlinear response of the fundamental bending mode of these drumhead resonators. The ROM captures the dynamic effects of the internal stresses resulting from three sources: The residual stresses from the fabrication process, the mismatch in thermal expansion between the constituent layers, and lastly, the applied electrostatic forces. The novel ROM developed in this article not only replicates the observed tunability of linear (within 5.5 % error) and nonlinear responses even near the states of critical buckling but also provides insightful intuition on the interplay among the softening and stiffening, which is invaluable for the precise design of similar devices. This remarkable nonlinear and large tunability of the natural frequency are valuable features for on-chip acoustic devices in broad applications such as signal manipulation, filtering, and MEMS waveguides. 
    more » « less